Operating System (keypoints)

OPERATING SYSTEM

An operating system (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. The operating system is a vital component of the system software in a computer system.
This tutorial will take you through step by step approach while learning Operating System concepts.

Audience

This tutorial has been prepared for the computer science graduates to help them understand the basic to advanced concepts related to Operating System.

Prerequisites

Before you start proceeding with this tutorial, we are making an assumption that you are already aware of basic computer concepts like what is keyboard, mouse, monitor, input, output, primary memory and secondary memory etc. If you are not well aware of these concepts, then we will suggest to go through our short tutorial on Computer Fundamentals.

-----------------------------------------------------------------------------
OPERATING SYSTEM OVERVIEW


An Operating System (OS) is an interface between a computer user and computer hardware. An operating system is a software which performs all the basic tasks like file management, memory management, process management, handling input and output, and controlling peripheral devices such as disk drives and printers.
Some popular Operating Systems include Linux, Windows, OS X, VMS, OS/400, AIX, z/OS, etc.

Definition

An operating system is a program that acts as an interface between the user and the computer hardware and controls the execution of all kinds of programs.
Conceptual view of an Operating System
Following are some of important functions of an operating System.
  • Memory Management
  • Processor Management
  • Device Management
  • File Management
  • Security
  • Control over system performance
  • Job accounting
  • Error detecting aids
  • Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main memory is a large array of words or bytes where each word or byte has its own address.
Main memory provides a fast storage that can be accessed directly by the CPU. For a program to be executed, it must in the main memory. An Operating System does the following activities for memory management −
  • Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are not in use.
  • In multiprogramming, the OS decides which process will get memory when and how much.
  • Allocates the memory when a process requests it to do so.
  • De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and for how much time. This function is called process scheduling. An Operating System does the following activities for processor management −
  • Keeps tracks of processor and status of process. The program responsible for this task is known as traffic controller.
  • Allocates the processor (CPU) to a process.
  • De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the following activities for device management −
  • Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.
  • Decides which process gets the device when and for how much time.
  • Allocates the device in the efficient way.
  • De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These directories may contain files and other directions.
An Operating System does the following activities for file management −
  • Keeps track of information, location, uses, status etc. The collective facilities are often known as file system.
  • Decides who gets the resources.
  • Allocates the resources.
  • De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs −
  • Security − By means of password and similar other techniques, it prevents unauthorized access to programs and data.
  • Control over system performance − Recording delays between request for a service and response from the system.
  • Job accounting − Keeping track of time and resources used by various jobs and users.
  • Error detecting aids − Production of dumps, traces, error messages, and other debugging and error detecting aids.
  • Coordination between other softwares and users − Coordination and assignment of compilers, interpreters, assemblers and other software to the various users of the computer systems.
----------------------------------------------------------------------------------

TYPES of OPERATING SYSTEM


Operating systems are there from the very first computer generation and they keep evolving with time. In this chapter, we will discuss some of the important types of operating systems which are most commonly used.

Batch operating system

The users of a batch operating system do not interact with the computer directly. Each user prepares his job on an off-line device like punch cards and submits it to the computer operator. To speed up processing, jobs with similar needs are batched together and run as a group. The programmers leave their programs with the operator and the operator then sorts the programs with similar requirements into batches.
The problems with Batch Systems are as follows −
  • Lack of interaction between the user and the job.
  • CPU is often idle, because the speed of the mechanical I/O devices is slower than the CPU.
  • Difficult to provide the desired priority.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at various terminals, to use a particular computer system at the same time. Time-sharing or multitasking is a logical extension of multiprogramming. Processor's time which is shared among multiple users simultaneously is termed as time-sharing.
The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems is that in case of Multiprogrammed batch systems, the objective is to maximize processor use, whereas in Time-Sharing Systems, the objective is to minimize response time.
Multiple jobs are executed by the CPU by switching between them, but the switches occur so frequently. Thus, the user can receive an immediate response. For example, in a transaction processing, the processor executes each user program in a short burst or quantum of computation. That is, if n users are present, then each user can get a time quantum. When the user submits the command, the response time is in few seconds at most.
The operating system uses CPU scheduling and multiprogramming to provide each user with a small portion of a time. Computer systems that were designed primarily as batch systems have been modified to time-sharing systems.
Advantages of Timesharing operating systems are as follows −
  • Provides the advantage of quick response.
  • Avoids duplication of software.
  • Reduces CPU idle time.
Disadvantages of Time-sharing operating systems are as follows −
  • Problem of reliability.
  • Question of security and integrity of user programs and data.
  • Problem of data communication.

Distributed operating System

Distributed systems use multiple central processors to serve multiple real-time applications and multiple users. Data processing jobs are distributed among the processors accordingly.
The processors communicate with one another through various communication lines (such as high-speed buses or telephone lines). These are referred as loosely coupled systems or distributed systems. Processors in a distributed system may vary in size and function. These processors are referred as sites, nodes, computers, and so on.
The advantages of distributed systems are as follows −
  • With resource sharing facility, a user at one site may be able to use the resources available at another.
  • Speedup the exchange of data with one another via electronic mail.
  • If one site fails in a distributed system, the remaining sites can potentially continue operating.
  • Better service to the customers.
  • Reduction of the load on the host computer.
  • Reduction of delays in data processing.

Network operating System

A Network Operating System runs on a server and provides the server the capability to manage data, users, groups, security, applications, and other networking functions. The primary purpose of the network operating system is to allow shared file and printer access among multiple computers in a network, typically a local area network (LAN), a private network or to other networks.
Examples of network operating systems include Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.
The advantages of network operating systems are as follows −
  • Centralized servers are highly stable.
  • Security is server managed.
  • Upgrades to new technologies and hardware can be easily integrated into the system.
  • Remote access to servers is possible from different locations and types of systems.
The disadvantages of network operating systems are as follows −
  • High cost of buying and running a server.
  • Dependency on a central location for most operations.
  • Regular maintenance and updates are required.

Real Time operating System

A real-time system is defined as a data processing system in which the time interval required to process and respond to inputs is so small that it controls the environment. The time taken by the system to respond to an input and display of required updated information is termed as the response time. So in this method, the response time is very less as compared to online processing.
Real-time systems are used when there are rigid time requirements on the operation of a processor or the flow of data and real-time systems can be used as a control device in a dedicated application. A real-time operating system must have well-defined, fixed time constraints, otherwise the system will fail. For example, Scientific experiments, medical imaging systems, industrial control systems, weapon systems, robots, air traffic control systems, etc.
There are two types of real-time operating systems.

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems, secondary storage is limited or missing and the data is stored in ROM. In these systems, virtual memory is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets priority over other tasks and retains the priority until it completes. Soft real-time systems have limited utility than hard real-time systems. For example, multimedia, virtual reality, Advanced Scientific Projects like undersea exploration and planetary rovers, etc.

--------------------------------------------------------------------------------


OPERATING SYSTEM SERVICES


An Operating System provides services to both the users and to the programs.
  • It provides programs an environment to execute.
  • It provides users the services to execute the programs in a convenient manner.
Following are a few common services provided by an operating system −
  • Program execution
  • I/O operations
  • File System manipulation
  • Communication
  • Error Detection
  • Resource Allocation
  • Protection

Program execution

Operating systems handle many kinds of activities from user programs to system programs like printer spooler, name servers, file server, etc. Each of these activities is encapsulated as a process.
A process includes the complete execution context (code to execute, data to manipulate, registers, OS resources in use). Following are the major activities of an operating system with respect to program management −
  • Loads a program into memory.
  • Executes the program.
  • Handles program's execution.
  • Provides a mechanism for process synchronization.
  • Provides a mechanism for process communication.
  • Provides a mechanism for deadlock handling.

I/O Operation

An I/O subsystem comprises of I/O devices and their corresponding driver software. Drivers hide the peculiarities of specific hardware devices from the users.
An Operating System manages the communication between user and device drivers.
  • I/O operation means read or write operation with any file or any specific I/O device.
  • Operating system provides the access to the required I/O device when required.

File system manipulation

A file represents a collection of related information. Computers can store files on the disk (secondary storage), for long-term storage purpose. Examples of storage media include magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of these media has its own properties like speed, capacity, data transfer rate and data access methods.
A file system is normally organized into directories for easy navigation and usage. These directories may contain files and other directions. Following are the major activities of an operating system with respect to file management −
  • Program needs to read a file or write a file.
  • The operating system gives the permission to the program for operation on file.
  • Permission varies from read-only, read-write, denied and so on.
  • Operating System provides an interface to the user to create/delete files.
  • Operating System provides an interface to the user to create/delete directories.
  • Operating System provides an interface to create the backup of file system.

Communication

In case of distributed systems which are a collection of processors that do not share memory, peripheral devices, or a clock, the operating system manages communications between all the processes. Multiple processes communicate with one another through communication lines in the network.
The OS handles routing and connection strategies, and the problems of contention and security. Following are the major activities of an operating system with respect to communication −
  • Two processes often require data to be transferred between them
  • Both the processes can be on one computer or on different computers, but are connected through a computer network.
  • Communication may be implemented by two methods, either by Shared Memory or by Message Passing.

Error handling

Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices or in the memory hardware. Following are the major activities of an operating system with respect to error handling −
  • The OS constantly checks for possible errors.
  • The OS takes an appropriate action to ensure correct and consistent computing.

Resource Management

In case of multi-user or multi-tasking environment, resources such as main memory, CPU cycles and files storage are to be allocated to each user or job. Following are the major activities of an operating system with respect to resource management −
  • The OS manages all kinds of resources using schedulers.
  • CPU scheduling algorithms are used for better utilization of CPU.

Protection

Considering a computer system having multiple users and concurrent execution of multiple processes, the various processes must be protected from each other's activities.
Protection refers to a mechanism or a way to control the access of programs, processes, or users to the resources defined by a computer system. Following are the major activities of an operating system with respect to protection −
  • The OS ensures that all access to system resources is controlled.
  • The OS ensures that external I/O devices are protected from invalid access attempts.
  • The OS provides authentication features for each user by means of passwords.

----------------------------------------------------------------------------------------------------------------

PROPERTIES of OS

Batch processing

Batch processing is a technique in which an Operating System collects the programs and data together in a batch before processing starts. An operating system does the following activities related to batch processing −
  • The OS defines a job which has predefined sequence of commands, programs and data as a single unit.
  • The OS keeps a number a jobs in memory and executes them without any manual information.
  • Jobs are processed in the order of submission, i.e., first come first served fashion.
  • When a job completes its execution, its memory is released and the output for the job gets copied into an output spool for later printing or processing.
Batch Processing

Advantages

  • Batch processing takes much of the work of the operator to the computer.
  • Increased performance as a new job get started as soon as the previous job is finished, without any manual intervention.

Disadvantages

  • Difficult to debug program.
  • A job could enter an infinite loop.
  • Due to lack of protection scheme, one batch job can affect pending jobs.

Multitasking

Multitasking is when multiple jobs are executed by the CPU simultaneously by switching between them. Switches occur so frequently that the users may interact with each program while it is running. An OS does the following activities related to multitasking −
  • The user gives instructions to the operating system or to a program directly, and receives an immediate response.
  • The OS handles multitasking in the way that it can handle multiple operations/executes multiple programs at a time.
  • Multitasking Operating Systems are also known as Time-sharing systems.
  • These Operating Systems were developed to provide interactive use of a computer system at a reasonable cost.
  • A time-shared operating system uses the concept of CPU scheduling and multiprogramming to provide each user with a small portion of a time-shared CPU.
  • Each user has at least one separate program in memory.
Multitasking
  • A program that is loaded into memory and is executing is commonly referred to as a process.
  • When a process executes, it typically executes for only a very short time before it either finishes or needs to perform I/O.
  • Since interactive I/O typically runs at slower speeds, it may take a long time to complete. During this time, a CPU can be utilized by another process.
  • The operating system allows the users to share the computer simultaneously. Since each action or command in a time-shared system tends to be short, only a little CPU time is needed for each user.
  • As the system switches CPU rapidly from one user/program to the next, each user is given the impression that he/she has his/her own CPU, whereas actually one CPU is being shared among many users.

Multiprogramming

Sharing the processor, when two or more programs reside in memory at the same time, is referred as multiprogramming. Multiprogramming assumes a single shared processor. Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one to execute.
The following figure shows the memory layout for a multiprogramming system.
Memory layout
An OS does the following activities related to multiprogramming.
  • The operating system keeps several jobs in memory at a time.
  • This set of jobs is a subset of the jobs kept in the job pool.
  • The operating system picks and begins to execute one of the jobs in the memory.
  • Multiprogramming operating systems monitor the state of all active programs and system resources using memory management programs to ensures that the CPU is never idle, unless there are no jobs to process.

Advantages

  • High and efficient CPU utilization.
  • User feels that many programs are allotted CPU almost simultaneously.

Disadvantages

  • CPU scheduling is required.
  • To accommodate many jobs in memory, memory management is required.

Interactivity

Interactivity refers to the ability of users to interact with a computer system. An Operating system does the following activities related to interactivity −
  • Provides the user an interface to interact with the system.
  • Manages input devices to take inputs from the user. For example, keyboard.
  • Manages output devices to show outputs to the user. For example, Monitor.
The response time of the OS needs to be short, since the user submits and waits for the result.

Real Time System

Real-time systems are usually dedicated, embedded systems. An operating system does the following activities related to real-time system activity.
  • In such systems, Operating Systems typically read from and react to sensor data.
  • The Operating system must guarantee response to events within fixed periods of time to ensure correct performance.

Distributed Environment

A distributed environment refers to multiple independent CPUs or processors in a computer system. An operating system does the following activities related to distributed environment −
  • The OS distributes computation logics among several physical processors.
  • The processors do not share memory or a clock. Instead, each processor has its own local memory.
  • The OS manages the communications between the processors. They communicate with each other through various communication lines.

Spooling

Spooling is an acronym for simultaneous peripheral operations on line. Spooling refers to putting data of various I/O jobs in a buffer. This buffer is a special area in memory or hard disk which is accessible to I/O devices.
An operating system does the following activities related to distributed environment −
  • Handles I/O device data spooling as devices have different data access rates.
  • Maintains the spooling buffer which provides a waiting station where data can rest while the slower device catches up.
  • Maintains parallel computation because of spooling process as a computer can perform I/O in parallel fashion. It becomes possible to have the computer read data from a tape, write data to disk and to write out to a tape printer while it is doing its computing task.
Spooling

Advantages

  • The spooling operation uses a disk as a very large buffer.
  • Spooling is capable of overlapping I/O operation for one job with processor operations for another job.
-------------------------------------------------------------------------------------------------------------------

PROCESSES of OS

Process

A process is basically a program in execution. The execution of a process must progress in a sequential fashion.
A process is defined as an entity which represents the basic unit of work to be implemented in the system.
To put it in simple terms, we write our computer programs in a text file and when we execute this program, it becomes a process which performs all the tasks mentioned in the program.
When a program is loaded into the memory and it becomes a process, it can be divided into four sections ─ stack, heap, text and data. The following image shows a simplified layout of a process inside main memory −
Process Components
S.N.Component & Description
1Stack
The process Stack contains the temporary data such as method/function parameters, return address and local variables.
2Heap
This is dynamically allocated memory to a process during its run time.
3Text
This includes the current activity represented by the value of Program Counter and the contents of the processor's registers.
4Data
This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A computer program is usually written by a computer programmer in a programming language. For example, here is a simple program written in C programming language −
#include <stdio.h>

int main() {
   printf("Hello, World! \n");
   return 0;
}
A computer program is a collection of instructions that performs a specific task when executed by a computer. When we compare a program with a process, we can conclude that a process is a dynamic instance of a computer program.
A part of a computer program that performs a well-defined task is known as an algorithm. A collection of computer programs, libraries and related data are referred to as a software.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ in different operating systems, and the names of these states are also not standardized.
In general, a process can have one of the following five states at a time.
S.N.State & Description
1Start
This is the initial state when a process is first started/created.
2Ready
The process is waiting to be assigned to a processor. Ready processes are waiting to have the processor allocated to them by the operating system so that they can run. Process may come into this state after Start state or while running it by but interrupted by the scheduler to assign CPU to some other process.
3Running
Once the process has been assigned to a processor by the OS scheduler, the process state is set to running and the processor executes its instructions.
4Waiting
Process moves into the waiting state if it needs to wait for a resource, such as waiting for user input, or waiting for a file to become available.
5Terminated or Exit
Once the process finishes its execution, or it is terminated by the operating system, it is moved to the terminated state where it waits to be removed from main memory.
Process States

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every process. The PCB is identified by an integer process ID (PID). A PCB keeps all the information needed to keep track of a process as listed below in the table −
S.N.Information & Description
1Process State
The current state of the process i.e., whether it is ready, running, waiting, or whatever.
2Process privileges
This is required to allow/disallow access to system resources.
3Process ID
Unique identification for each of the process in the operating system.
4Pointer
A pointer to parent process.
5Program Counter
Program Counter is a pointer to the address of the next instruction to be executed for this process.
6CPU registers
Various CPU registers where process need to be stored for execution for running state.
7CPU Scheduling Information
Process priority and other scheduling information which is required to schedule the process.
8Memory management information
This includes the information of page table, memory limits, Segment table depending on memory used by the operating system.
9Accounting information
This includes the amount of CPU used for process execution, time limits, execution ID etc.
10IO status information
This includes a list of I/O devices allocated to the process.
The architecture of a PCB is completely dependent on Operating System and may contain different information in different operating systems. Here is a simplified diagram of a PCB −
Process Control Block
The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.


--------------------------------------------------------------------------------------------------------------


PROCESS SCHEDULING of OS

Definition

The process scheduling is the activity of the process manager that handles the removal of the running process from the CPU and the selection of another process on the basis of a particular strategy.
Process scheduling is an essential part of a Multiprogramming operating systems. Such operating systems allow more than one process to be loaded into the executable memory at a time and the loaded process shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate queue for each of the process states and PCBs of all processes in the same execution state are placed in the same queue. When the state of a process is changed, its PCB is unlinked from its current queue and moved to its new state queue.
The Operating System maintains the following important process scheduling queues −
  • Job queue − This queue keeps all the processes in the system.
  • Ready queue − This queue keeps a set of all processes residing in main memory, ready and waiting to execute. A new process is always put in this queue.
  • Device queues − The processes which are blocked due to unavailability of an I/O device constitute this queue.
Process Scheduling Queuing
The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The OS scheduler determines how to move processes between the ready and run queues which can only have one entry per processor core on the system; in the above diagram, it has been merged with the CPU.

Two-State Process Model

Two-state process model refers to running and non-running states which are described below −
S.N.State & Description
1Running
When a new process is created, it enters into the system as in the running state.
2Not Running
Processes that are not running are kept in queue, waiting for their turn to execute. Each entry in the queue is a pointer to a particular process. Queue is implemented by using linked list. Use of dispatcher is as follows. When a process is interrupted, that process is transferred in the waiting queue. If the process has completed or aborted, the process is discarded. In either case, the dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handle process scheduling in various ways. Their main task is to select the jobs to be submitted into the system and to decide which process to run. Schedulers are of three types −
  • Long-Term Scheduler
  • Short-Term Scheduler
  • Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which programs are admitted to the system for processing. It selects processes from the queue and loads them into memory for execution. Process loads into the memory for CPU scheduling.
The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O bound and processor bound. It also controls the degree of multiprogramming. If the degree of multiprogramming is stable, then the average rate of process creation must be equal to the average departure rate of processes leaving the system.
On some systems, the long-term scheduler may not be available or minimal. Time-sharing operating systems have no long term scheduler. When a process changes the state from new to ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system performance in accordance with the chosen set of criteria. It is the change of ready state to running state of the process. CPU scheduler selects a process among the processes that are ready to execute and allocates CPU to one of them.
Short-term schedulers, also known as dispatchers, make the decision of which process to execute next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling the swapped out-processes.
A running process may become suspended if it makes an I/O request. A suspended processes cannot make any progress towards completion. In this condition, to remove the process from memory and make space for other processes, the suspended process is moved to the secondary storage. This process is called swapping, and the process is said to be swapped out or rolled out. Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N.Long-Term SchedulerShort-Term SchedulerMedium-Term Scheduler
1It is a job schedulerIt is a CPU schedulerIt is a process swapping scheduler.
2Speed is lesser than short term schedulerSpeed is fastest among other twoSpeed is in between both short and long term scheduler.
3It controls the degree of multiprogrammingIt provides lesser control over degree of multiprogrammingIt reduces the degree of multiprogramming.
4It is almost absent or minimal in time sharing systemIt is also minimal in time sharing systemIt is a part of Time sharing systems.
5It selects processes from pool and loads them into memory for executionIt selects those processes which are ready to executeIt can re-introduce the process into memory and execution can be continued.

Context Switch

A context switch is the mechanism to store and restore the state or context of a CPU in Process Control block so that a process execution can be resumed from the same point at a later time. Using this technique, a context switcher enables multiple processes to share a single CPU. Context switching is an essential part of a multitasking operating system features.
When the scheduler switches the CPU from executing one process to execute another, the state from the current running process is stored into the process control block. After this, the state for the process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that point, the second process can start executing.
Process Context Switch
Context switches are computationally intensive since register and memory state must be saved and restored. To avoid the amount of context switching time, some hardware systems employ two or more sets of processor registers. When the process is switched, the following information is stored for later use.
  • Program Counter
  • Scheduling information
  • Base and limit register value
  • Currently used register
  • Changed State
  • I/O State information
  • Accounting information

------------------------------------------------------------------------------------------------------------------------




0 comments:

Post a Comment

Monthly Posts